
© Oxford University Press 2010 1 

Sequence analysis 

Threshold Average Precision (TAP-k): A Measure of Retrieval 
Designed for Bioinformatics 
Hyrum D. Carroll1, Maricel G. Kann2, Sergey L. Sheetlin1, and John L. Spouge1,* 
1National Center for Biotechnology Information, Bethesda, MD 20894, United States of America 
{carhyrum,sheetlin,spouge}@ncbi.nlm.nih.gov  
2University of Maryland, Baltimore County, Baltimore, MD 21250, United States of America 
mkann@umbc.edu 
Received on XXXXX; revised on XXXXX; accepted on XXXXX  

Equation Chapter 1 Section 1 
Associate Editor: XXXXXXX 

 
ABSTRACT 
Motivation: Because database retrieval is a fundamental operation, 
the measurement of retrieval efficacy is critical to progress in bioin-
formatics. This paper points out some issues with current methods 
of measuring retrieval efficacy and suggests some improvements. In 
particular, many studies have used the pooled ROCn score, the area 
under the curve (AUC) of a “pooled” receiver operating characteristic 
(ROC) curve, truncated at n irrelevant records. Unfortunately, the 
pooled ROCn score does not faithfully reflect actual usage of re-
trieval algorithms. Additionally, a pooled ROCn score can be very 
sensitive to retrieval results from as little as a single query.  
Methods: To replace the pooled ROCn score, we propose the Thre-
shold Average Precision (TAP-k), a measure closely related to the 
well-known average precision in information retrieval, but reflecting 
the usage of E-values in bioinformatics. Furthermore, in addition to 
conditions previously given in the literature, we introduce three new 
criteria that an ideal measure of retrieval efficacy should satisfy.  
Results: PSI-BLAST, GLOBAL, HMMER, and RPS-BLAST provided 
examples of using the TAP-k and pooled ROCn scores to evaluate 
sequence retrieval algorithms. In particular, compelling examples 
using real data highlight the drawbacks of the pooled ROCn score, 
showing that it can produce evaluations skewing far from intuitive 
expectations. In contrast, the TAP-k satisfies most of the criteria 
desired in an ideal measure of retrieval efficacy.  
Availability and Implementation: The TAP-k web server and 
downloadable Perl script are freely available at 
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/tap/. 
Contact: spouge@ncbi.nlm.nih.gov 

1 INTRODUCTION 
In bioinformatics, retrieval from databases is a fundamental opera-
tion. Progress therefore depends on being able to recognize supe-
rior retrieval algorithms, so the measurement of retrieval efficacy 
is critical in bioinformatics. Swets (1967) stated that an ideal 
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measure of retrieval efficacy (or more simply, a “retrieval meas-
ure”) should satisfy four conditions:  

(1) It should concern itself solely with the effectiveness of se-
parating the relevant from the non-relevant [records] and 
not with the efficiency of resource use. 

(2) It should not be dependent on a [user] threshold, but should 
measure the potential output of the method. 

(3) It should be a single number. 
(4) It should have absolute significance as a measure of a sin-

gle method and should readily allow comparisons of differ-
ent methods to decide which is best. 

To fix our terms, when a user queries a database of R records, a 
retrieval algorithm typically lists up to R records, ranked by some 
score S indicating the probability that the corresponding record has 
relevance to the query. In text retrieval (e.g., Google or PubMed 
results), retrieval lists do not indicate the scores producing their list 
orders. In a significant break with the traditions of information 
retrieval, however, bioinformatics retrieval often explicitly pre-
sents an E-value with the score, so users are free to choose an E-
value threshold E0 and then ignore the retrieval list beyond E0. For 
concreteness, we discuss only E-values, but the methods in this 
paper apply to any score S. (Note that E-values and the retrieval 
ranks increase together.) 

In accord with the motivation behind E-values, Wilbur (1992) 
modified Swets’ Condition (2):  

(2’) It should be characterized by a [user] threshold, but should 
reflect the quality of retrieval at every rank down to that 
threshold. 

Wilbur’s modification implicitly respects an overarching principle 
governing retrieval measures, which we call “the Principle of Fi-
delity”: a retrieval measure should faithfully reflect the actual us-
age of the retrieval list. If not, the measure might be “ideal” in 
some abstract sense, but would lack a practical meaning.  

The Principle of Fidelity supports Wilbur’s Condition (2’) in 
bioinformatics, because an E-value threshold E0 influences the 
actual usage of a retrieval algorithm. Because a user rarely exam-
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ines a retrieval list far beyond the E-value threshold E0, any practi-
cal measure of database retrieval in bioinformatics should reflect 
the user’s E0. The rest of this article therefore disregards Swets’ 
Condition (2) in favor of Wilbur’s Condition (2’), referring to the 
result as the “Swets-Wilbur Conditions”. 

In addition to the Swets-Wilbur Conditions, the Principle of Fi-
delity suggests that an ideal retrieval measure should satisfy addi-
tional conditions. Accordingly, we introduce the following: 

(5) It should be robust against results representing a small pro-
portion of possible user queries. 

(6) When two disjoint sets of queries are considered, its value 
for the union of the two sets should lie between its values 
for the two sets of queries. 

(7) It should reflect the choice of threshold; in particular, it 
should eventually decrease as the threshold increases to in-
clude the entire retrieval list. 

Condition (5) reflects the fact that not many users are likely to 
query with the proportionally small subset, so the subset should not 
greatly influence conclusions about retrieval efficacy. Condition 
(6) says that when combined, two disjoint sets of retrieval results 
should not suggest better (or worse) efficacy than either set indi-
vidually. Condition (7) reflects the fact that presumably, an appro-
priate E-value threshold E0 has practical utility: if users prefer to 
examine the entire retrieval list, they have no use for an E-value 
threshold. 

The ROCn score (Gribskov and Robinson, 1996) described in the 
Methods section is often used as a retrieval measure in bioinfor-
matics. In fact, the “pooled ROCn score” (Schaffer et al., 1999) 
(also described in the Methods section) is probably the most popu-
lar summary retrieval measure over several different queries. The 
Principle of Fidelity casts immediate suspicion on the pooled 
ROCn score as a retrieval measure, however. Users do not examine 
the pooled retrieval list aggregated from lists for individual que-
ries: users see the individual retrieval lists one at a time.  

The Results section shows that the pooled ROCn score does not 
always satisfy Condition (5) or (6). Moreover, it always fails to 
satisfy Condition (7). To replace the pooled ROCn score, we there-
fore propose as a measure of retrieval the Threshold Average Pre-
cision at a median of k errors per query (abbreviated and pro-
nounced “TAP-k”). The TAP-k summarizes features of the Preci-
sion-Recall curve (described in our Methods section). Precision-
Recall curves are popular in general information retrieval and al-
ready have found some favor in bioinformatics (Chen, 2003; Jones 
et al., 2005; Krishnamurthy et al., 2007; Raychaudhuri et al., 2002; 
Wass and Sternberg, 2008).  

To exemplify the Precision-Recall curve and TAP-k, the Results 
section presents several examples of actual database retrieval, us-
ing the programs PSI-BLAST (Schaffer et al., 2001), GLOBAL 
(Kann et al., 2007), HMMER (Eddy, 1998) and RPS-BLAST 
(Schaffer et al., 1999). The section shows that unlike the TAP-k, 
the pooled ROCn score can produce evaluations so misleading as to 
be completely contrary to common sense (Chen, 2003; Hand, 
2009; Sierk and Pearson, 2004). Finally, the Discussion section 
summarizes the implications of our results.  

2 METHODS 
2.1 Databases and Query Sets 
We used two distinct databases in this work (see Supplementary Material 
for complete details). First, Gonzalez and Pearson (2010) constructed 
DB_344_Pfam, 344 protein families from the Pfam database (Finn et al., 
2008). As sample queries for DB_344_Pfam, they provided 50 randomly 
selected families, each with a “query A”, from a deserted part of each fam-
ily’s phylogenetic tree; and a “query B”, from a heavily populated part. 
Gonzalez and Pearson considered as “relevant” only sequences in the same 
domain family or clan as the query.  

Second, Kann et al. (2007) provided DB_331_CDD, the position-
specific scoring matrices (PSSMs) corresponding to 331 multiple sequence 
alignments from the NCBI Conserved Domain Database (CDD) (Marchler-
Bauer et al., 2007). As sample queries for DB_331_CDD, they provided 
DB_8920_PDB (which Kann et al. (2007) named “DB_10185”, for the 
10,185 PDB sequences it contained before additional filtering). 
DB_8920_PDB contains 8,920 non-redundant sequences from the RCSB 
Protein Data Bank (PDB) (Berman et al., 2007). Kann et al. considered as 
“relevant” only those sequences in DB_8920_PDB that had at least 80% 
overlap with a representative in DB_331_CDD.  

2.2 Retrieval Programs 
Retrieval with PSI-BLAST (version 2.2.21) provided our anecdotal exam-
ples. We performed five PSI-BLAST iterations on NCBI's NR database 
with an E-value threshold of 0.005, using the final PSSM to retrieve se-
quences from DB_344_Pfam. Estimates of retrieval efficacy reflected 
solely the final retrieval from DB_344_Pfam, not the previous iterations on 
the NR database.  

Additionally, we calculated retrieval results for GLOBAL, HMMER and 
RPS-BLAST with the DB_8920_PDB queries searching in the 
DB_331_CDD. We utilized two variants of HMMER: HMMER_semi-
global and HMMER_local (HMMER in “global” and “local” modes re-
spectively). The settings for HMMER, along with their rationale, have been 
specified elsewhere (Kann et al., 2007). 

2.3 Retrieval Measures 

2.3.1 The Receiver Operating Characteristic for n Irrelevant Re-
cords (ROCn) Curve and Score: Given a particular query, assume every 
database record is either relevant or irrelevant to the query. (The standard 
ROC terminology refers to “true positives” and “false positives”, but in 
information retrieval, the terms “relevant” and “irrelevant” are pertinent. 
Unlike some authors (Hand, 2009), we view information retrieval as a 
problem in ranking, not a problem in classification.) Let the total number of 
irrelevant records be F. In response to a query, a retrieval algorithm pro-
duces a ranked retrieval list of all records in the database. Number each 
irrelevant record in the database 1, 2, …, f, …, F, according to its order in 
the retrieval ranking. The “ROC curve” plots the fraction of relevant re-
cords preceding the f-th irrelevant record against the fraction f / F. The 
“ROC score” is the area under the ROC curve, abbreviated “AUC” (Swets, 
1988). The ROC score is the probability that a random relevant record is 
ranked before a random irrelevant record (Bamber, 1975). By analogy to 
the ROC curve, the “ROCn curve” is the ROC curve truncated after the first 
n irrelevant records, with the ROCn score being the area under the ROCn 
curve divided by n / F. An “ideal retrieval” ranks all relevant records before 
any irrelevant record. The normalization by n / F ensures that ideal retrieval 
receives the maximum ROCn score of 1.0. For the ROCn, a threshold of 
n = 50 irrelevant records seems accepted practice (Gribskov and Robinson, 
1996).  

2.3.2 The Pooled Receiver Operating Characteristic for n Irrele-
vant Records (pooled ROCn) Score: To calculate the pooled ROCn 
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score, merge the retrieval lists for all sample queries into a “pooled re-
trieval list”, and sort the pooled list on the E-value. Then, calculate the 
ROCn score for the pooled list, as though it were a single retrieval list.  

2.3.4 The Precision-Recall (PR) Curve and the Average Precision 
(AP): Precision-Recall (PR) curves and average precision (AP) often quan-
tify retrieval efficacy in general information retrieval. To calculate the AP 
(see Supplementary Material for more details), fix the retrieval algorithm A, 
and consider a particular query q to a fixed database. Let the database con-
tain T(q) records relevant to the query q, and let them be ranked t1<…<tT(q) 
in the retrieval list for algorithm A. (Thus, for ideal retrieval, ti = i for i = 1, 
…, T(q).) Let p(j) denote “precision”, defined as the fraction j / tj of relevant 
records in the retrieval list up to and including the j-th relevant record. (The 
precision is therefore one minus the false discovery rate, i.e., it is a true 
positive rate.) Also, let r(j) denote “recall”, the fraction j / T(q) of relevant 
records up to and including the j-th relevant record. The PR curve plots p(j) 
against r(j) (Fig. 1). 

2.3.5 The Threshold-Average Precision for k Median Errors per 
Query (TAP-k): We now design a retrieval measure reflecting the usage 
of E-values in bioinformatics. Let E0 be an arbitrary E-value threshold. For 
the query q, define j(E0) to be the number of relevant records in the re-
trieval list with an E-value less than or equal to the threshold E0. Consider 
the “terminal pre-threshold irrelevant records” (TPIRs), the irrelevant re-
cords retrieved after the j(E0)-th relevant record but having an E-value less 
than or equal to E0 (Fig. 2). Call the last record with an E-value less than or 
equal to E0 the “sentinel” record. Regardless of whether or not the sentinel 
is relevant, it is associated with a precision p(E0), where p(E0) is the frac-
tion of records preceding or including the sentinel that are relevant. (If 
there are no records before the E-value threshold E0, define p(E0) = 0.) The 
following measure captures the effect of both post-threshold relevant re-
cords and TPIRs:  

  (1) 

To summarize Equation (1), it assigns the post-threshold relevant records a 
precision of 0, considers the precision at the sentinel record, and then aver-
ages the precision of the pre-threshold relevant, sentinel, and post-threshold 
relevant records. (If j(E0) = 0, there are no relevant records before the 
threshold, and we adopt the standard convention that empty sums equal 0, 
so Equation (1) yields the value 0.)  

To measure the overall retrieval efficacy for several sample queries, the 
simplest and most intuitive aggregate measure is , the average of the 
TAP, , over all queries (Chen, 2003). Query averages are easy to 
interpret, and if usage favors certain types of queries, the average can be 
weighted, e.g., linearly or quadratically with the number of proteins in a 
family (Green and Brenner, 2002). 

Now, we determine an E-value threshold E0 mirroring a user’s tolerance 
for retrieval errors. Assume (as the ROCn score does) that a user tolerates 
about k errors per query (EPQ), k being some arbitrary integer. The Results 
section, e.g., gives k = 20 as an arbitrary but not unreasonable estimate of a 
(maximum) tolerable EPQ. Determine the smallest E-value Ek(A) corre-
sponding to a median number of k EPQ over all queries q for a given algo-
rithm A. Thus, for any E-value threshold larger than Ek(A), at least 50% of 
the queries have at least k errors. (The Results section explains why the 
median EPQ is preferable to the mean EPQ.) Each algorithm’s E-value 
predicts the actual number of EPQ with varying accuracy, so the threshold 
Ek(A) depends on the algorithm A. With the same median k EPQ, all algo-
rithms have the same specificity. With their specificities fixed at the same 
value, their sensitivities are on an equal footing, and therefore comparable. 

In summary, our measure of overall retrieval efficacy is , the 
(query-averaged) Threshold Average Precision for a median k EPQ (the 
“TAP-k”), i.e., it is the average over all queries of Equation (1) with 
E0 = Ek(A). 

2.4 Software Availability 
We implemented Equation (1) in a Perl script and provided a web 
interface to calculate the TAP-k for a set of retrieval lists. Both are 
easy to use, return results quickly, and are freely available at 
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/tap/. 

3 RESULTS 
In this section, we compare the TAP-k to the pooled ROCn score. 
First, we examine the effect of using the median EPQ versus using 
the mean EPQ. Next, we show how a single query can skew the 
pooled ROCn score. Then, we present an example of calculating 
the E-value threshold for k median errors per query. Finally, we 
show how varying the E-value threshold affects the TAP-k. 

Fig. 1. An example of a Precision-Recall graph and TAP curve. The E-
values at each point are represented by the colors on the bar beneath. 

Fig. 2. Example retrieval list with relevant (blue “R”s) and irrelevant 
(red “I”s) records illustrating the j(E0)-th relevant record, TPIRs and 
the sentinel record. 
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3.1 Median EPQ versus Mean EPQ 
To illustrate the compelling reasons why the mean EPQ is inferior 
to the median EPQ when analyzing database retrieval, consider a 
PSI-BLAST retrieval from DB_344_Pfam. Fig. 3 displays a box-
and-whisker plot of the distribution over queries of the EPQ 
against E-value. At an E-value of 0.01, only about 10% of queries 
produce any retrieval errors at all (data not shown), although the 
mean EPQ is already about 2. Thus, the mean EPQ of 2 reflects a 
definite minority of the queries that users encounter. As an extreme 
hypothetical example, if a single query out of 1×106 possible que-
ries produced 2×106 false positives, and all other queries had per-
fect retrieval, the mean EPQ would still be 2.0, although few users 
indeed would encounter any retrieval errors. In contrast, the me-
dian EPQ is 0.0, accurately representing 99.9999% of the queries. 
The Principle of Fidelity therefore favors the median EPQ over the 
mean EPQ, because it reflects a user’s typical experience more 
closely.  

3.2 The Pooled ROCn 
To illustrate the counter-intuitive behavior of the pooled ROCn 
score when measuring retrieval efficacy over several queries, con-
sider Fig. 4 (a). It displays ROC50 curves corresponding to three 
retrieval lists from the Pfam Homoserine Dehydrogenase family, 
two for the single queries A and B of the Homoserine Dehydro-
genase family in Pfam, and one for the corresponding pooled re-
trieval list for A and B together. The retrieval list for query A has a 
ROC50 score of 0.971, close to ideal retrieval, ranking all but 14 
out of the 481 relevant records before any irrelevant record. On the 
other hand, the retrieval list for query B has a ROC50 score of 
0.195, because it ranks only 94 of the 481 relevant records ahead 
of the corresponding irrelevant records. All initial n = 50 irrelevant 
records in the retrieval list of query B have lower E-values than 

any relevant records in the retrieval list for query A, with the 50-th 
record for query B having an E-value of 1×10-134. Because query B 
has small E-values that appear early in its retrieval, it dominates 
the values of the pooled ROC50. Because pooling the two queries 
doubles the number of relevant records, the pooled ROCn score is 
only 0.098, half the minimum ROCn of the two queries.  

We attempted to remedy the counter-intuitive behavior of the 
ROCn score by truncating the retrieval lists for queries A and B at 
the E-value threshold E20(PSI-BLAST) (data not shown). For 
every n ≤ 203, however, the pooled ROCn curve still places an 
exaggerated emphasis on query B and its ineffective retrieval.  

 
Fig. 3. The distribution of EPQ vs. E-value for PSI-BLAST retrieval over 
all queries in DB_344_Pfam. The dashed green line indicates the mean 
EPQ; the solid red line, the median EPQ; the top and bottom of the blue 
boxes, the first and third quartiles of the EPQ distribution; and the top and 
bottom whiskers, the maximum and minimum EPQ over all queries. 

 
Fig. 4. PSI-BLAST retrieval results for the Homoserine Dehydrogenase 
Pfam family searching in DB_344_Pfam. (a) Individual ROC50 curves, 
along with the corresponding pooled ROC50. Note that the pooled ROC 
curve is lower than both of the queries. This same condition continues until 
203 irrelevant records. (b) Precision-Recall curves (and their average) for 
the same retrieval results. The TAP for each is the average precision (with 
the precision of last record repeated). 
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3.3 The Calculation of the Threshold Ek(A) 
To illustrate the mechanics of determining the threshold Ek(A) for 
different algorithms, consider the median EPQ at the E-value 
threshold E0 = Ek(A) corresponding to k = 20 median EPQ. The 
threshold Ek(A) depends on the algorithm A, e.g., E20(GLOBAL) = 
66.5, E20(HMMER_semi-global) = 82.7, E20(HMMER_local) = 
39.7 and E20(RPS-BLAST) = 79.4. In actual usage, if users tolerate 
k EPQ and limit the EPQ by learning the E-value threshold Ek(A), 
the Principle of Fidelity indicates that different algorithms A 
should be compared at different E-values Ek(A).  

3.4 The Query-Averaged TAP-k 
Fig. 4 (b) illustrates the Precision-Recall curves for the Pfam Ho-
moserine Dehydrogenase family, up to the recall corresponding to 
the threshold E-value E20(PSI-BLAST) = 8.1, where PSI-BLAST 
yields 20 median EPQ over all queries for DB_344_Pfam. On one 
hand, query A yields nearly ideal retrieval, and there is little differ-
ence between the ROCn score and the TAP-k. On the other hand, 
query B yields precision 1.0 until a recall of about 0.2, when the 
precision drops dramatically. It then rises and falls again before the 
recall near 1 corresponding to E20(PSI-BLAST) = 8.1. Although 
the curve for query B indicates that its retrieval is inferior to the 
retrieval for query A, the average of the curves for queries A and B 
lies between the individual curves, as one expects intuitively.  

Using the threshold Ek(A) for A = {GLOBAL, HMMER_semi-
global, HMMER_local, RPS-BLAST}, we calculated the (query-
averaged) TAP-k for each algorithm’s retrieval from 
DB_331_CDD (Table 1). (On one hand, because the number of 
errors for a single query is unbounded, the median is better than 
the mean as a summary statistic for determining a threshold E-
value; on the other hand, the TAP-k for each query is bounded, so 
the mean is a suitable summary statistic for the TAP-k over all 
queries.) Additionally, we looked at the average TAP versus E-
value (Fig. 5), because the TAP may peak as the EPQ increases. In 
contrast, all ROC curves increase (or at least remain constant) with 
increasing EPQ. In the figure, each algorithm A has a peak E-
value, E0*(A), between 0.12 and 1.03 (see also Table 1). 

4 DISCUSSION 
This article is not the first to question the pertinence of ROC anal-
ysis to information retrieval (Chen, 2003; Hand, 2009; Pearson and 
Sierk, 2005; Sierk and Pearson, 2004). In fact, many other re-
searchers have pointed out the superiority of Precision-Recall 
curves over ROC curves in information retrieval. Fawcett (2006) 
advises that, “Precision-recall graphs are commonly used where 

‘the number of [irrelevant records] is many orders of magnitude 
greater than [the number of relevant records]’”, the common case 
for database retrieval and most of bioinformatics. Likewise, Liu 
and Shriberg (2007) suggest that for “an imbalanced data set, PR 
curves generally provide better visualization than do ROC curves, 
for viewing differences among different algorithms.” Similarly, 
Davis and Goadrich (2006) warn that “with highly skewed data-
sets, Precision-Recall curves give a more informative picture of an 
algorithm's performance” and that, “by comparing false positives 
to true positives rather than true negatives, [precision] captures the 
effect of the large number of negative examples on the algorithm's 
performance.” Finally, Landgrebe et al. (2006) argue that ROC 
analysis effectively ignores the “minority class” of relevant 
records. 

Several bioinformatics studies have relied on ROC analysis as 
their figure of merit for automatic improvement of database re-
trieval algorithms. As a figure of merit, however, the pooled ROCn 
score suffers from defects so obvious that other bioinformatics 
studies (wisely, in our opinion) have gone so far as to defend con-
clusions drawn from the pooled ROCn score by checking individ-
ual retrieval lists (Sierk and Pearson, 2004). Clearly, if the defects 
of the pooled ROCn score require human intervention, it is inade-
quate to the task of automated improvement of retrieval algo-
rithms. To provide explicit logical foundations for the discussion 
about the inadequacies of retrieval measures, this paper also articu-
lated a Principle of Fidelity: a retrieval measure should faithfully 
reflect the actual usage of the retrieval list. In harmony with the 
Principle of Fidelity, we suggested adding Conditions (5)-(7) to the 
Swets-Wilbur Conditions for an ideal retrieval measure.  

The Results section demonstrates that the pooled ROCn can vio-
late Conditions (5) and (6). Condition (6) is common sense, so its 
failure in Fig. 4 is particularly disturbing. On the other hand, since 
the TAP-k is an average over all queries, Condition (5) and Condi-
tion (6) both follow as rigorous mathematical truths. Moreover, 
consideration of the geometry of a ROC curve shows that the 
ROCn always increases with the EPQ (or equivalently, with the E-

 
Fig. 5. TAP curves against the E-value threshold E0, for searching 
DB_331_CDD with each query from DB_8920_PDB in turn. Retrieval 
results for GLOBAL are represented with a solid green line; for 
HMMER_semi-global, with a long-dashed blue line; for HMMER_local, 
with a medium-dashed red line; and for RPS-BLAST, with a dotted black 
line. The arrows indicate the maximum TAP and its E-value threshold 
E0*(A) for each algorithm A. 

Table 1.  Retrieval results for DB_331_CD 

Algorithm TAP-20 E0*(A) peak TAP 

GLOBAL 0.164 1.034 0.227 
HMMER_semi-global 0.185 0.861 0.237 
HMMER_local 0.152 0.116 0.221 
RPS-BLAST 0.142 0.331 0.218 
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value threshold), in violation of Condition (7). On the other hand, 
the TAP-k sometimes does satisfy Condition (7): Fig. 5 shows its 
eventual decrease against an increasing E-value threshold E0. In-
terestingly, the peak values in Fig. 5 occur at values of E0*(A) not 
entirely outside acceptable ranges of the E-value thresholds for the 
corresponding algorithms, perhaps leading to the hope that even 
the selection of threshold E-values E0 might be automated. Unfor-
tunately, the Supplementary Material gives an example of retrieval 
lists where the TAP-k increases monotonically with the E-value 
threshold. Although the TAP-k has many properties desirable to 
optimizing retrieval algorithms automatically, it is currently unable 
to serve as a basis for automated determination of a best E-value 
threshold E0*(A). 

For concreteness, this article has discussed E-values, but in fact 
it is pertinent to any score S, not just to E-values. The E-value is 
really just a type of score that retains theoretical meaning across 
different queries as a surrogate for a record’s probability of rele-
vance. Like other scores, however, E-values do not predict the 
relevancy of records with complete accuracy, and the accuracy 
depends very much on the application (Brenner et al., 1998). Thus, 
if a particular algorithm A produces a retrieval list, a user willing to 
tolerate about a median k errors per query must apparently learn 
the corresponding E-value threshold E0 = Ek(A) by empirical expe-
rience. Initially, it might appear counter-intuitive that the E-value 
threshold E0 = Ek(A) depends on the algorithm A, but the depend-
ency does reflect actual usage of the algorithm. This article ap-
proximated actual usage by specifying a median EPQ of k = 20, 
but the measure of tolerated EPQ can and should be adapted to fit 
individual needs, e.g., k can be chosen differently, query-averages 
can be weighted, trimmed means or a different percentile EPQ 
from the median for k can be used, etc.  

The ROCn also depends implicitly on the algorithm A, because it 
fixes the total number n of errors across all queries. Thus, where 
the TAP-k fixes the median EPQ, the ROCn fixes the mean EPQ. 
In general (particularly for unbounded random variables), the mean 
can be much more misleading as a measure of central tendency 
than the median. In particular, if it produces many errors, even a 
single query could increase the mean EPQ arbitrarily. Fig. 3 and 
Fig. 4 reinforce the superiority of choosing the median EPQ in the 
TAP-k, by showing that a single query can dominate the pooled 
ROCn score. By extension, coverage vs. EPQ plots (Brenner et al., 
1998) could reflect typical user experience more closely by plot-
ting coverage against median EPQ, rather than mean EPQ.  

Fig. 4 illustrates the same retrieval results for both the pooled 
ROCn score and a TAP-k. The pooled ROCn score and the TAP-k 
agree (0.9709 versus 0.9708 respectively) for query A, but differ 
for query B (0.1954 and 0.5214 respectively). The pooled ROCn 
score is 0.098, whereas the TAP-k is 0.745. Thus, besides giving 
some numerical comparison of the pooled ROCn and TAP-k, Fig. 4 
illustrates that the TAP-k faithfully represents the relative contribu-
tion of “ill-behaved” queries to a summary measure of retrieval 
over all queries. 

In general, we expect that studies would usually draw the same 
conclusions about relative retrieval efficacy of different algo-
rithms, regardless of whether they used the pooled ROCn score or 
the TAP-k (although the TAP-k enforces realistic E-value thresh-
olds by exposing its threshold E0 = Ek(A) explicitly). Davis and 
Goadrich (2006) noted similar expectations between AP and ROC 
scores. In cases of striking discordance, however, this article pre-

sents compelling arguments that the TAP-k is more likely than the 
pooled ROCn score to accord with intuitive expectations, and that 
its use will make measurements of retrieval efficacy reflect actual 
user experience more faithfully. Most importantly, unlike the 
pooled ROCn, the TAP-k always satisfies Conditions (5) and (6) 
for an ideal retrieval measure, so it can provide a suitable figure of 
merit when automating the evaluation of retrieval algorithms. 
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